Carbon capture has a sparkling future
2 April 2009
New research shows that for millions of years carbon dioxide has been stored safely and naturally in underground water in gas fields saturated with the greenhouse gas. The findings - published in Nature yesterday - bring carbon capture and storage a step closer.
Politicians are committed to cutting levels of atmospheric carbon dioxide to slow climate change. Carbon capture and storage is one approach to cut levels of the gas until cleaner energy sources are developed.
But the risks around the long-term storage of millions of cubic metres of carbon dioxide in depleted gas and oil fields has met with some concern, not least because of the possibility of some of the gas escaping and being released back to the atmosphere. Until now, researchers couldn't be sure how the gas would be securely trapped underground.

Chaffin Ranch geyser, Utah - this geyser erupts from an aquifer naturally saturated with carbon dioxide
Naturally-occurring carbon dioxide can be trapped in two ways. The gas can dissolve in underground water - like bottled sparkling water. It can also react with minerals in rock to form new carbonate minerals, essentially locking away the carbon dioxide underground.
Previous research in this area used computer models to simulate the injection of carbon dioxide into underground reservoirs in gas or oil fields to work out where the gas is likely to be stored. Some models predict that the carbon dioxide would react with rock minerals to form new carbonate minerals, while others suggest that the gas dissolves into the water. Real studies to support either of these predictions have, until now, been missing.
To find out exactly how the carbon dioxide is stored in natural gas fields, an international team of researchers - led by the University of Manchester - uniquely combined two specialised techniques. They measured the ratios of the stable isotopes of carbon dioxide and noble gases like helium and neon in nine gas fields in North America, China and Europe. These gas fields were naturally filled with carbon dioxide thousands or millions of years ago.
They found that underground water is the major carbon dioxide sink in these gas fields and has been for millions of years.
Dr Stuart Gilfillan, the lead researcher who completed the project at the University of Edinburgh said, "We've turned the old technique of using computer models on its head and looked at natural carbon dioxide gas fields which have trapped carbon dioxide for a very long time.
"By combining two techniques, we've been able to identify exactly where the carbon dioxide is being stored for the first time. We already know that oil and gas have been stored safely in oil and gas fields over millions of years. Our study clearly shows that the carbon dioxide has been stored naturally and safely in underground water in these fields."
Professor Chris Ballentine of the University of Manchester, the project director, said, "The universities of Manchester and Toronto are international leaders in different aspects of gas tracing. By combining our expertise we have been able to invent a new way of looking at carbon dioxide fields. This new approach will also be essential for monitoring and tracing where carbon dioxide captured from coal-fired power stations goes when we inject it underground this is critical for future safety verification."
Professor Barbara Sherwood Lollar, of the University of Toronto and co-author of the study, hopes the new data can be fed into future computer models to make modelling underground carbon capture and storage more accurate.
The work was funded by the Natural Environment Research Council and the Natural Sciences & Engineering Research Council of Canada.
Further information
NERC Press Office
Natural Environment Research Council
Polaris House, North Star Avenue
Swindon, SN2 1EU
Tel: 01793 411561
Mob: 07917 557215
Catriona Kelly
Press and PR Officer
University of Edinburgh
Tel: 0131 651 4401
Deborah Haile
Press Officer
University of Manchester
Tel: 0161 275 8387
Sean Bettam
Press Officer
University of Toronto
Notes
1. The paper, 'Solubility trapping in formation water as dominant CO2 sink in natural gas fields', is published in Nature 2 April 2009, doi: 10.1038/nature07852.
2. Dr Stuart Gilfillan is a geochemist who gained his first degree in Earth Science from the University of Glasgow and his PhD in Geology from the School of Earth, Atmosphere & Environmental Science at The University of Manchester in 2006. He is now a researcher at the Scottish Centre for Carbon Storage at the University of Edinburgh.
3. Professor Chris Ballentine specialises in trace gas geochemistry (noble gases) at the University of Manchester, UK, and is director of this NERC-funded project.
4. Professor Barbara Sherwood Lollar specialises in trace gas geochemistry (stable isotopes) at the University of Toronto, Canada, and was external director of this NERC-funded project.
5. Established in 1827, the University of Toronto is Canada's largest university with approximately 70,000 students. Recognized as a global leader in research and teaching. The University of Toronto's distinguished faculty, institutional record of groundbreaking scholarship and wealth of innovative academic opportunities continually attract outstanding students and academics from around the world. Located on three campuses in and around Toronto - one of the world's most diverse regions - the University of Toronto's vibrant academic life is defined by a unique degree of cultural diversity in its learning community.
6. The Natural Environment Research Council funds world-class science, in universities and its own research centres, that increases knowledge and understanding of the natural world. It is tackling major environmental issues such as climate change, biodiversity and natural hazards. NERC receives around £400m a year from the government's science budget, which is used to provide independent research and training in the environmental sciences.
Press release: 08/09
External links
- Nature
- University of Manchester
- University of Edinburgh
- University of Toronto
- Natural Sciences & Engineering Research Council of Canada
Press links
Recent press news
- New Director for the British Antarctic Survey
- Plans to strengthen UK-Indian collaboration in Earth sciences and environmental research
- CryoSat-2 mission reveals major Arctic sea-ice loss
- UK and USA collaborate in airborne climate science projects
- New capital investments for NERC
- Innovations in soil science will grow the solutions to global food security
- New Year Honours
- Professor Seymour Laxon
- Antarctic lake mission called off
- New genetics project could help save the ash tree